PLATELET RICH PLASMA vs. MARROW CELL COMPOSITION
Growth Factor Strategy vs. Cell Driven Therapy

PRP—A GROWTH FACTOR DRIVEN THERAPY

Platelet Rich Plasma (PRP) is a general term used for a biologic that is made from centrifuging venous whole blood to volume reduce plasma and red blood cells and thereby enriching the treating composition for platelets and white blood cells. The therapy targets the inflammatory phase of the healing cascade. In younger patients with healthy red marrow, or in cases where the injury is minor, adding additional peripheral blood platelets and white blood cells to the clot, (PRP) and the resulting growth factors, beyond what aggregates at the wound bed naturally, can amplify the vasculogenic response. The number of platelets and white blood cells in peripheral blood and their ability to home to sites of tissue damage and form a platelet fibrin clot does not diminish with age. The ability of one’s body to mobilize marrow cells to the site of trauma in response to the cytokines released by blood cells in the wound diminishes greatly over time. In addition, age impacts the number of stem cells and the function of both peripheral blood mature cells and immature marrow cells.

In a stalled partially healed situation, starting a new healing cascade by introducing PRP into micro-wounds created by the PRP delivery needle, is often sufficient to create a corresponding vasculogenic response to complete the healing cascade. Thus, PRP is a white blood cell and platelet dependent strategy. The additional growth factors from the exogenously added platelets and white cells, beyond what would naturally be present from cells that aggregate at the wound site, causes greater stem cell migration with a resulting transition from the inflammatory phase to the proliferation and remodelling phase of the healing cascade. The heightened age dependent inflammatory profile of blood sourced monocytes, macrophages, and neutrophils and their deleterious impact on the micro-environment of the wound bed and the age dependent diminished vasculogenic capability of marrow, suggests that PRP may be a strategy better suited for healthy older patients with minor defects or younger patients. Also, leukocyte depleted PRP (often referred to as pure PRP), may be better suited for patients that are older or otherwise have a heightened immune profile associated with such co-morbidities as obesity or diabetes.
TREATING COMPOSITIONS SOURCED FROM MARROW ASPIRATE—A CELL DRIVEN THERAPY

Marrow is a Cell Driven Strategy

Properly aspirating and appropriately administering marrow cells is significantly enhancing and exactly mimicking the body’s natural healing process. In a hind limb ischemia animal model using aged animals of diminished vasculogenic capacity, mechanically mimicking the natural healing response through autologous transplantation has shown to have a statistically significant clinical benefit. (35, 42) Through cytokine release and cell-to-cell contact, bone marrow stem cells orchestrate the transition from inflammation to proliferation and remodelling. (9, 10, 13, 15, 16) Marrow based treating compositions are cell dose dependent and take advantage of marrow stem cells and complimentary cells ability to alter the type and function of local cells to create an immune driven cascade to transition and amplify the cellular inventory needed to complete the remodelling phase of the healing cascade. (50, 68, 78, 79, 80, 83)

Mechanically sourcing and placing the cells responsible for transitioning from the inflammatory to the proliferation phase, is often sufficient to complete the healing process. (66, 78, 79)

Dose Response of Marrow Cells

Critical to successful healing are adequate numbers of immature stem cells and complimentary cells that have migratory capability and whose growth factor profile can influence migrating and resident cells to move into a tissue proliferation and regeneration profile. (23, 24, 50, 78, 79) The growth factor profile of a biologic that has a greater proportion of cells from marrow is different from PRP that is made entirely from peripheral blood cells and platelets. (21) Hernigou et al in non-union and osteonecrosis demonstrated that clinical results were linked to the stem cell content of the graft as measured by CFU-f. (66, 78, 79) This correlation between the CFU-f content of the biologic and outcomes has been repeated by other groups. (5) Interestingly, in the Hernigou work, CFU-f was the only measured variable that rose to statistical significance; not total nucleated cells or platelets. (66, 78) This is consistent with bone marrow rescue therapy in oncology where the stem cell content of the graft, not the number of nucleated cells, is the driver of clinical success.

Through Cytokine Release and Cell-to-Cell Contact, Bone Marrow Stem Cells are the Quarterbacks of the Injury Site

The growth factor profile of cells from marrow is different than that produced by blood cells. (21, 33, 36, 80) Paracrine signalling to create synergistic interactions between cells in wound healing requires a coordinated interplay among cells, growth factors, and extracellular matrix proteins. (9, 10, 13, 14, 15, 16, 28, 46) MSC’s have a substantial involvement in the initial stage of healing by controlling the fate of inflammation. (38, 39) By responding to changes in their environment, and using complex growth factor mediated signalling circuitry, MSC’s organize site-specific regenerative responses. (9, 10, 13, 14, 15, 16, 28,
Mature resident cells, under the influence of migrating stem cells, demonstrate a plasticity that allows them to make a significant contribution to the healing cascade. For example, MSCs modulate the phenotype of macrophages by inducing a shift from inflammatory M1 macrophages to anti-inflammatory M2 macrophages, thereby transitioning the wound healing cascade from inflammatory to proliferation and remodelling.

Complimentary Cells from Marrow
A diverse group of complimentary cells other than stem cells migrate to the source of hypoxia caused by trauma. Removing BMSC’s (bone marrow stem cells) from their normal environment of complimentary cells reduces their capacity and that to achieve their maximal potential, BMSC’s require direct physical contact with accessory cells. In a clinical setting, the bone forming capability of a full complement of cells was demonstrated to be superior to single cell suspensions of MSC alone.
REFERENCES

5. Pettine K et al Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells 2015;33:146-56.

9. Maxson S et al Concise Review: Role of Mesenchymal Stem Cells in Wound Repair Stem Cells Translational Medicine February 2012, vol 1 no 2 142-149

11. El-Jawhari et al Interactions Between Multi potential Stromal Cells (MSC’s) and Immune Cells During Bone Healing; Stem Cell Biology and Regenerative Medicine September 2016, pp 179-211

12. Frieri, Met al Wounds, burns, trauma, and injury Wound Medicine, 13 (2016) 12-17

13. Prevosto C et al Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell – lymphocyte interaction Haematologica 2007; 92:881-888

17. Zhang W et al; VEGF and BMP-2 Promote Bone Regeneration by Facilitating Bone Marrow Stem Cell Homing and Differentiation European Cells and Materials Vol 27, 2014 pg 1-12

22 Stabile et al CD3+8 Lymphocytes Regulate the Arteriogenic Response to Ischemia by Infiltrating the Site of Collateral Vessel Development & Recruiting CD4+ Mononuclear Cells Through Expression of Interleukin 16 Circulation 2006;113; 118-124

23 Assmus B. et al Long-term clinical outcome after intracoronary application of bone marrow-derived mononuclear cells for acute myocardial infarction: migratory capacity of administered cells determines event-free survival European Heart Journal, February 2014, 1275-1283

24 Sackner-Bernstein J et al Abstract 11330: Predictors of Response to Intracoronary Delivery of CD34+CXC14+ Enriched Bone Marrow Derived stem cells (AMR-001) Early After STEMi Circulation November 20, 2012

25 Aiuti A et al. The Chemokine SDF-1 is a Chemotactant for Human CD34+ Hematopoietic Progenitor Cells and Provides a New Mechanism to Explain the Mobilization of CD34+ Progenitorsto Peripheral Blood. The Journal of Experimental Medicine Vol. 185 no:1 111

26 Dengshun D et al Megakaryocyte-Bone Marrow Stromal Aggregates Demonstrate Increased Colony Formation and Alkaline Phosphatase Expression in vitro Tissue Engineering; Vol 10 No. 5/6 200424

28 Sudeepta A et al. Human mesenchymal stem cells modulate allogeneic immune cell responses, Blood 2005 105: 1815-1822

29 Aceves J et al CXCR4+, and SDF-1 Bone Marrow Cells Are Mobilized into the Blood Stream in Acute Myocardial Infarction and Acute Ischemia World Journal of Cardiovascular Diseases, 2014, 4, 361-367

31 Laupheimer M et al Selective Migration of Subpopulations of Bone Marrow Cells along and SDF-1 a and ATP Gradient Bone Marrow Res. December 2014

33 Korf-Klingebiel et al Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction European Heart Journal October 2008

34 Sadik et al Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation Journal of Leukocyte Biology February 2012 vol. 91 no. 2 207-215

35 Seeger F et al CXCR4 Expression Determines Functional Activity of Bone Marrow Derived Mononuclear Cells for Therapeutic Neovascularization in Acute Ischemia Arteriosclerosis, Thrombosis, and Vascular Biology November 1, 2009

36 Smiler D et al Growth factors and gene expression of stem cells: bone marrow compared with peripheral blood Implant Dentistry 2010: Jun; 19(3) : 229-40

37 Fuchs, E et al Socializing with the Neighbors: Stem Cells and Their Niche Cell Volume 116, issue 6, March pg 769-778

38 Schmidt-Bleek, K et al Inflammatory phase of bone healing initiates the regenerative healing cascade Cell Tissue Research March 2012, volume 347, issue 3, pp 567-573

39 Gibon E et al. Aging, inflammation, stem cells, and bone healing Stem Cell Research & Therapy 2016; 7:44

41 Gonzalez R et al Stem Cells Targeting Inflammation as Potential Anti-aging Strategies and Therapies Cell & Tissue Transplantation & Therapy 2015: 7 1-8

42 Lam Y et al Aging impairs ischemia-induced neovascularization by attenuating the mobilization of bone marrow–derived angiogenic cells International Journal of Cardiology Metabolic Endocrine September 2016 Vol 12 pg 19-29

44 Scheufler R et al Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting JAM Coll Cardio. 2003;4(2(12))2073-2080

46 Li D et al Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells Mediators of Inflammation Volume 2016, Article ID2631439

47 Reale A et al Functional and Biological Role of Endothelial Precursor Cells in Tumor Progression: A New Potential Therapeutic Target in Haematological Malignancies Stem Cells Int. 2016;

48 Lin C et al Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy Vol 14 No 10 page 1159-1163

49 Peichev M et al Expression of VEGFR-2 and AC133 by circulating CD34+ cells identifies a population of functional endothelial precursors Blood 2000, Feb 1 95(3): 952-8

50 Menocal L et al Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing Stem Cell Research & Therapy 2015 6:24

51 Seebach C et al Cell-Based Therapy by Implanted Human Bone Marrow-Derived Mononuclear Cells Improved Bone Healing of Large Bone Defects in Rats Tissue Engineering Part A. May 2015, 21(9-10)

52 Ceradini D et al Homing to Hypoxia: HIF-1 as a Mediator of Progenitor Cell recruitment to Injured Tissue Trends in Cardiovascular Medicine Volume 15, Issue 2, February 2005, Pages 57-63

58 Massberger et al “Platelets secrete stromal cell-derived facto alpha 1 and recruit bone marrow derived progenitor cells to arterial thrombi in vivo” JEM, vol 203, No5, May 15, 2006 1221-1233

63 Zhang Y eta l PKM2 released by neutrophils at wound site facilitates early wound healing by promoting angiogenesis Wound Repair and Regeneration vol. 24 Issue 2 March / April 2016 pg 328-336
Duerschmied D et al Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice blood December 12 2012

Cassano J et al Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration Knee Surgery, Sports Traumatology, Arthroscopy pp 1–10

Scarpone M et al Annual Orthopedic Update 2016, Allegheny Health Network; "Marrow Cellution Bone Marrow Aspiration System and Related Concentrations of Stem and Progenitor Cells". Lecture- Machael A Scarpone MD, Daniel Kuebler

Dante D et al Ultrasound-Guided Injection of Platelet- Rich Plasma and Hyaluronic Acid, Separately and in Combination, for Hip Osteoarthritis A Randomized Controlled Study Am J Sports Med March 2016 vol. 44 no. 3 664-671

Baylis D et al; Understanding how we age: insights into inflammation; Longevity & Healthspan May 2013; DOI: 10.1186/2046-2395-2-8©

Fontaine M et al Unravelling the Mesenchymal Stromal Cells’ Paracrine Immunomodulatory Effects Transfusion Medicine Reviews Vol 30 issue 1 Jan 2016 pg. 37-43

Bordon Y et al Neutrophils, Growing old disgracefully? Nature Reviews Immunology October 2015, 15, 665

86 Yager D et al The proteolytic environment of chronic wounds Wound Repair And Regeneration; The international Journal of Tissue Repair and Regeneration; Volume 7 Issue 6, November 1999 433–441

Address correspondence and reprint requests to: info@aspire-medical.eu